9 resultados para Melanoma

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While blockade of the cytotoxic T-lymphocyte antigen-4 (CTLA-4) T cell regulatory receptor has become a commonly utilized strategy in the management of advanced melanoma, many questions remain regarding the use of this agent in patient populations with autoimmune disease. We present a case involving the treatment of a patient with stage IV melanoma and ulcerative colitis (UC) with anti-CTLA-4 antibody immunotherapy. Upon initial treatment, the patient developed grade III colitis requiring tumor necrosis factor-alpha (TNF-α) blocking antibody therapy, however re-treatment with anti-CTLA-4 antibody following a total colectomy resulted in a rapid complete response accompanied by the development of a tracheobronchitis, a previously described extra-intestinal manifestation of UC. This case contributes to the evolving literature on the use of checkpoint inhibitors in patients also suffering from autoimmune disease, supports future clinical trials investigating the use of these agents in patients with autoimmune diseases, and suggests that an understanding of the specific molecular pathways involved in a patient's autoimmune pathology may provide insight into the development of more effective novel combinatorial immunotherapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The Notch signaling pathway is constitutively activated in human cutaneous melanoma to promote growth and aggressive metastatic potential of primary melanoma cells. Therefore, genetic variants in Notch pathway genes may affect the prognosis of cutaneous melanoma patients. METHODS: We identified 6,256 SNPs in 48 Notch genes in 858 cutaneous melanoma patients included in a previously published cutaneous melanoma genome-wide association study dataset. Multivariate and stepwise Cox proportional hazards regression and false-positive report probability corrections were performed to evaluate associations between putative functional SNPs and cutaneous melanoma disease-specific survival. Receiver operating characteristic curve was constructed, and area under the curve was used to assess the classification performance of the model. RESULTS: Four putative functional SNPs of Notch pathway genes had independent and joint predictive roles in survival of cutaneous melanoma patients. The most significant variant was NCOR2 rs2342924 T>C (adjusted HR, 2.71; 95% confidence interval, 1.73-4.23; Ptrend = 9.62 × 10(-7)), followed by NCSTN rs1124379 G>A, NCOR2 rs10846684 G>A, and MAML2 rs7953425 G>A (Ptrend = 0.005, 0.005, and 0.013, respectively). The receiver operating characteristic analysis revealed that area under the curve was significantly increased after adding the combined unfavorable genotype score to the model containing the known clinicopathologic factors. CONCLUSIONS: Our results suggest that SNPs in Notch pathway genes may be predictors of cutaneous melanoma disease-specific survival. IMPACT: Our discovery offers a translational potential for using genetic variants in Notch pathway genes as a genotype score of biomarkers for developing an improved prognostic assessment and personalized management of cutaneous melanoma patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 UICC.Cytokines such as Interleukin (IL)212p70 ("IL-12") and IL-23 can influence tumor progression. We tested the hypothesis that blood levels of IL-12p40, the common subunit of both cytokines, are associated with melanoma progression. Blood from 2,048 white melanoma patients were collected at a single institution between March 1998 and March 2011. Plasma levels of IL-12p40 were determined for 573 patients (discovery), 249 patients (Validation 1) and 244 patients (Validation 2). Per 10-unit change of IL-12p40 level was used to investigate associations with melanoma patient outcome among all patients or among patients with early or advanced stage. Among stage I/II melanoma patients in the pooled data set, after adjustment for sex, age, stage and blood draw time from diagnosis, elevated IL-12p40 was associated with melanoma recurrence [hazard ratio (HR)51.04 per 10-unit increase in IL-12p40, 95% CI 1.02-1.06, p58.48 × 10-5]; Elevated IL-12p40 was also associated with a poorer melanoma specific survival (HR51.06, 95% CI 1.03-1.09, p53.35 × 10-5) and overall survival (HR51.05, 95% CI 1.03-1.08, p58.78 × 10-7) in multivariate analysis. Among stage III/IV melanoma patients in the pooled data set, no significant association was detected between elevated IL-12p40 and overall survival, or with melanoma specific survival, with or without adjustment for the above covariates. Early stage melanoma patients with elevated IL-12p40 levels are more likely to develop disease recurrence and have a poorer survival. Further investigation with a larger sample size will be needed to determine the role of IL-12p40 in advanced stage melanoma patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide association studies (GWASs) have characterized 13 loci associated with melanoma, which only account for a small part of melanoma risk. To identify new genes with too small an effect to be detected individually but which collectively influence melanoma risk and/or show interactive effects, we used a two-step analysis strategy including pathway analysis of genome-wide SNP data, in a first step, and epistasis analysis within significant pathways, in a second step. Pathway analysis, using the gene-set enrichment analysis (GSEA) approach and the gene ontology (GO) database, was applied to the outcomes of MELARISK (3,976 subjects) and MDACC (2,827 subjects) GWASs. Cross-gene SNP-SNP interaction analysis within melanoma-associated GOs was performed using the INTERSNP software. Five GO categories were significantly enriched in genes associated with melanoma (false discovery rate ≤ 5% in both studies): response to light stimulus, regulation of mitotic cell cycle, induction of programmed cell death, cytokine activity and oxidative phosphorylation. Epistasis analysis, within each of the five significant GOs, showed significant evidence for interaction for one SNP pair at TERF1 and AFAP1L2 loci (pmeta-int  = 2.0 × 10(-7) , which met both the pathway and overall multiple-testing corrected thresholds that are equal to 9.8 × 10(-7) and 2.0 × 10(-7) , respectively) and suggestive evidence for another pair involving correlated SNPs at the same loci (pmeta-int  = 3.6 × 10(-6) ). This interaction has important biological relevance given the key role of TERF1 in telomere biology and the reported physical interaction between TERF1 and AFAP1L2 proteins. This finding brings a novel piece of evidence for the emerging role of telomere dysfunction into melanoma development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent investigation has identified association of IL-12p40 blood levels with melanoma recurrence and patient survival. No studies have investigated associations of single-nucleotide polymorphisms (SNPs) with melanoma patient IL-12p40 blood levels or their potential contributions to melanoma susceptibility or patient outcome. In the current study, 818,237 SNPs were available for 1,804 melanoma cases and 1,026 controls. IL-12p40 blood levels were assessed among 573 cases (discovery), 249 cases (case validation), and 299 controls (control validation). SNPs were evaluated for association with log[IL-12p40] levels in the discovery data set and replicated in two validation data sets, and significant SNPs were assessed for association with melanoma susceptibility and patient outcomes. The most significant SNP associated with log[IL-12p40] was in the IL-12B gene region (rs6897260, combined P=9.26 × 10(-38)); this single variant explained 13.1% of variability in log[IL-12p40]. The most significant SNP in EBF1 was rs6895454 (combined P=2.24 × 10(-9)). A marker in IL12B was associated with melanoma susceptibility (rs3213119, multivariate P=0.0499; OR=1.50, 95% CI 1.00-2.24), whereas a marker in EBF1 was associated with melanoma-specific survival in advanced-stage patients (rs10515789, multivariate P=0.02; HR=1.93, 95% CI 1.11-3.35). Both EBF1 and IL12B strongly regulate IL-12p40 blood levels, and IL-12p40 polymorphisms may contribute to melanoma susceptibility and influence patient outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have reported that cigarette smoking is inversely associated with the risk of melanoma. This study further tested whether incorporating genetic factors will provide another level of evaluation of mechanisms underlying the association between smoking and risk of melanoma. We investigated the association between SNPs selected from genome-wide association studies (GWAS) on smoking behaviors and risk of melanoma using 2,298 melanoma cases and 6,654 controls. Among 16 SNPs, three (rs16969968 [A], rs1051730 [A] and rs2036534 [C] in the 15q25.1 region) reached significance for association with melanoma risk in men (0.01 < = P values < = 0.02; 0.85 < = Odds Ratios (ORs) <= 1.20). There was association between the genetic scores based on the number of smoking behavior-risk alleles and melanoma risk with P-trend = 0.005 among HPFS. Further association with smoking behaviors indicating those three SNPs (rs16969968 [A], rs1051730 [A] and rs2036534 [C]) significantly associated with number of cigarettes smoked per day, CPD, with P = 0.009, 0.011 and 0.001 respectively. The SNPs rs215605 in the PDE1C gene and rs6265 in the BDNF gene significantly interacted with smoking status on melanoma risk (interaction P = 0.005 and P = 0.003 respectively). Our study suggests that smoking behavior-related SNPs are likely to play a role in melanoma development and the potential public health importance of polymorphisms in the CHRNA5-A3-B4 gene cluster. Further larger studies are warranted to validate the findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously shown that treatment of prostate cancer and melanoma cells expressing GRP78 on their cell surface with antibody directed against the COOH-terminal domain of GRP78 upregulates and activates p53 causing decreased cell proliferation and upregulated apoptosis. In this report, we demonstrate that treatment of 1-LN prostate cancer cells with this antibody decreases cell surface expression of GRP78, Akt(Thr308) and Akt(Ser473) kinase activities and reduces phosphorylation of FOXO, and GSK3beta. This treatment also suppresses activation of ERK1/2, p38 MAPK and MKK3/6; however, it upregulates MKK4 activity. JNK, as determined by its phosphorylation state, is subsequently activated, triggering apoptosis. Incubation of cells with antibody reduced levels of anti-apoptotic Bcl-2, while elevating pro-apoptotic BAD, BAX and BAK expression as well as cleaved caspases-3, -7, -8 and -9. Silencing GRP78 or p53 gene expression by RNAi prior to antibody treatment abrogated these effects. We conclude that antibody directed against the COOH-terminal domain of GRP78 may prove useful as a pan suppressor of proliferative/survival signaling in cancer cells expressing GRP78 on their cell surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In addition to modulating the function and stability of cellular mRNAs, microRNAs can profoundly affect the life cycles of viruses bearing sequence complementary targets, a finding recently exploited to ameliorate toxicities of vaccines and oncolytic viruses. To elucidate the mechanisms underlying microRNA-mediated antiviral activity, we modified the 3' untranslated region (3'UTR) of Coxsackievirus A21 to incorporate targets with varying degrees of homology to endogenous microRNAs. We show that microRNAs can interrupt the picornavirus life-cycle at multiple levels, including catalytic degradation of the viral RNA genome, suppression of cap-independent mRNA translation, and interference with genome encapsidation. In addition, we have examined the extent to which endogenous microRNAs can suppress viral replication in vivo and how viruses can overcome this inhibition by microRNA saturation in mouse cancer models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MOTIVATION: Technological advances that allow routine identification of high-dimensional risk factors have led to high demand for statistical techniques that enable full utilization of these rich sources of information for genetics studies. Variable selection for censored outcome data as well as control of false discoveries (i.e. inclusion of irrelevant variables) in the presence of high-dimensional predictors present serious challenges. This article develops a computationally feasible method based on boosting and stability selection. Specifically, we modified the component-wise gradient boosting to improve the computational feasibility and introduced random permutation in stability selection for controlling false discoveries. RESULTS: We have proposed a high-dimensional variable selection method by incorporating stability selection to control false discovery. Comparisons between the proposed method and the commonly used univariate and Lasso approaches for variable selection reveal that the proposed method yields fewer false discoveries. The proposed method is applied to study the associations of 2339 common single-nucleotide polymorphisms (SNPs) with overall survival among cutaneous melanoma (CM) patients. The results have confirmed that BRCA2 pathway SNPs are likely to be associated with overall survival, as reported by previous literature. Moreover, we have identified several new Fanconi anemia (FA) pathway SNPs that are likely to modulate survival of CM patients. AVAILABILITY AND IMPLEMENTATION: The related source code and documents are freely available at https://sites.google.com/site/bestumich/issues. CONTACT: yili@umich.edu.